EIAJ Sound Multiplexing Decoder

Description

The CXA2202M, is a bipolar IC designed as EIAJ TV sound multiplexing decoder, provides various functions including sound multiplexing demodulation, broadcast mode identification (stereo/bilingual discrimination display), mode display, and muting.

Features

- Adjustment free of filter
- High frequency stereo separation improved
- An internal active filter greatly reduces the external parts
- Use of the countdown method for broadcast mode identification eliminates the necessity of adjusting the identification system (Cue oscillator)
- Internal filter eliminates interference from digital facsimile signals
- The discrimination time needed to shift from multiplexing sound to monaural sound is reduced.
- Output level: 520 mVrms (1 kHz , monaural, 100%)
- Forced monaural mode can be set to operate only for stereo broadcasts or for stereo/bilingual broadcasts.

Applications

- Color TVs
- Hi-Fi VCRs

Structure

Bipolar silicon monolithic IC
Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

- Supply voltage
Vcc 10 V
- Input signal (Pin 7) Vis 0.6 Vp-p
- Control voltage
(Pins 6, 16, 17, 18) Vic Vcc V
- Operating temperature Topr -20 to $+75{ }^{\circ} \mathrm{C}$
- Storage temperature Tstg -65 to $+150{ }^{\circ} \mathrm{C}$
- Allowable power dissipation

	PD	1000	mW
- LED drive current	ILED	10	mA

Operating Supply Voltage Range 8.5 to 9.5 V

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

Pin Description
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=9 \mathrm{~V}\right)$

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
1	GND	0		GND.
$\begin{gathered} \hline 2 \\ 5 \\ 8 \\ 10 \\ 14 \\ 15 \\ 24 \\ 27 \end{gathered}$	NC	-	-	Keep these pins open. (They are not connected to the chip.)
3	REFL	1.2 V		The noise elimination filter connection of internal reference voltage.
4	Vcc	-		Power supply.
6	MO MODE	-	(6)	Forced monaural mode selection. When Low or open, the forced monaural mode operates for stereo broadcasts only; if High, the forced monaural mode operates for both stereo and bilingual broadcasts.
7	MPX IN	4.1V		Sound multiplexing signal input. Typical input level = 70 mVrms (monaural, 100\%)
9	CUBI	4.1 V		Bias capacitor connection of Cue pulse generator.

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Pin \\
No.
\end{tabular} \& Symbol \& Pin voltage \& Equivalent circuit \& Description \\
\hline 20 \& R OUT \& 4.1V \& \& R-ch output. \\
\hline 21 \& L OUT \& 4.1V \& \& \begin{tabular}{l}
L-ch output. \\
During "TEST", the Cue signal component passed through the Cue BPF is output.
\end{tabular} \\
\hline \begin{tabular}{l}
22 \\
\hline 23
\end{tabular} \& MC IN

MC OUT \& 4.1 V

3.4 V \& \& DC cut capacitor connection of main signal.

\hline | 25 |
| :--- |
| 26 | \& SC IN

SC OUT \& 4.1 V

3.9 V \& \& DC cut capacitor connection of sub signal.

\hline 28 \& SUBI \& 4.1V \& \& Bias capacitor connection of sub FM detector. "TEST" mode, used for filter adjustment, is activated by grounding this pin.

\hline
\end{tabular}

Electrical Characteristics Measurement Circuit

Electrical Characteristics
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=9 \mathrm{~V}\right)$

No.	Item	Symbol	SW conditions	Bias conditions	Conditions	Measure- ment point	Min.	Typ.	Max.	Unit
1	Current consumption	Icc	1	1	Measure current input to Pin 4	Pin 4	17	25	36	mA
2	Sub output level 400 Hz	Vs1	4	$\begin{gathered} 2 \\ \text { and } \\ 3 \end{gathered}$	Input signal: SIG1 Measure output amplitude (400 Hz , sine wave) of Pins 20 and 21: Vs1 (15kLPF)	Pins 20 and $21^{* 1}$	480	580	690	mVrms
3	Sub frequency characteristics 1 kHz	Fs1	4	$\begin{gathered} 2 \\ \text { and } \\ 3 \end{gathered}$	Input signal: SIG2 Measure output amplitude (1 kHz , sine wave) of Pins 20 and 21: Vs2 $\mathrm{Fs} 1=20 \log \frac{\mathrm{Vs} 2}{\mathrm{Vs} 1}$ (15kLPF)	Pins 20 and $21^{* 1}$	-1.6	-0.6	0	dB
4	Sub frequency characteristics 10 kHz	Fs2	4	$\begin{gathered} 2 \\ \text { and } \\ 3 \end{gathered}$	Input signal: SIG3 Measure output amplitude (10 kHz , sine wave) of Pins 20 and 21: Vs3 $\mathrm{Fs} 2=20 \log \frac{\mathrm{Vs} 3}{\mathrm{Vs} 1}$ (15kLPF)	Pins 20 and $21^{* 1}$	-19.0	-16.5	-14.0	dB
5	Sub distortion	Ds	4	$\begin{gathered} 2 \\ \text { and } \\ 3 \end{gathered}$	Input signal: SIG2 Measure distortion of output signal (1 kHz , sine wave) of Pins 20 and 21 (15kLPF)	Pins 20 and $21^{* 1}$	-	1	2	\%
6	Sub S/N ratio	Ns	4	$\begin{gathered} 2 \\ \text { and } \\ 3 \end{gathered}$	Input signal: SIG2 Measure S / N ratio of output (1 kHz) of Pins 20 and 21 (15kLPF. RMS)	Pins 20 and $21^{* 1}$	59	64	-	dB
7	Stereo distortion L-ch	Dstl	4	2	Input signal: SIG4 Measure distortion of output signal (1 kHz , sine wave) of Pin 21 (15kLPF)	Pin 21	-	0.2	1.5	\%
8	Stereo distortion R-ch	Dstr	4	2	Input signal: SIG5 Measure distortion of output signal (1 kHz , sine wave) of Pin 20 (15kLPF)	Pin 20	-	0.2	1.5	\%

*1 When bias condition is "3", measurement point is Pin 20 only.

No.	Item	Symbol	SW conditions	Bias conditions	Conditions	$\begin{aligned} & \text { Measure- } \\ & \text { ment } \\ & \text { point } \end{aligned}$	Min.	Typ.	Max.	Unit
9	Stereo output level L-ch 1 kHz	Vst\|	4	2	Input signal: SIG4 Measure output amplitude (1 kHz , sine wave) of Pin 21 (15kLPF)	Pin 21	440	540	640	mVrms
10	Stereo output level R-ch 1 kHz	Vstr	4	2	Input signal: SIG5 Measure output amplitude (1 kHz , sine wave) of Pin 20 (15kLPF)	Pin 20	440	540	640	mVrms
11	Main output level MAIN OUT	Vm1	4	2	Input signal: SIG6 Measure output signal $(400 \mathrm{~Hz}$, sine wave) of Pin 19 (15kLPF)	Pin 19	480	580	690	mVrms
12	Main output level	Vm2	4	2	Input signal: SIG6 Measure amplitude of output signal $(400 \mathrm{~Hz}$, sine wave) of Pins 20 and 21 (15kLPF)	Pins 20 and 21	480	580	690	mVrms
13	Main frequency characteristics 1 kHz	Fm1	4	2	Input signal: SIG7 Measure output amplitude (1 kHz , sine wave) of Pins 20 and 21: Vm3 $\mathrm{Fm} 1=20 \log \frac{\mathrm{Vm} 3}{\mathrm{Vm} 2}$	Pins 20 and 21	-1.6	-0.6	0	dB
14	Main frequency characteristics 10kHz	Fm2	4	2	Input signal: SIG8 Measure output amplitude (10 kHz , sine wave) of Pins 20 and 21: Vm4 $\mathrm{Fm} 2=20 \log \frac{\mathrm{Vm} 4}{\mathrm{Vm} 2}(15 \mathrm{kLPF})$	Pins 20 and 21	-16.0	-14.0	-12.0	dB
15	Main distortion MAIN OUT	Dm1	4	2	Input signal: SIG7 Measure distortion of output signal (1 kHz , sine wave) of Pin 19 (15kLPF)	Pin 19	-	0.2	1	\%
16	Main distortion	Dm2	4	2	Input signal: SIG7 Measure distortion of output signal (1 kHz , sine wave) of Pins 20 and 21 (15kLPF)	Pins 20 and 21	-	0.2	1	\%

No.	Item	Symbol	$\left\|\begin{array}{l} \text { SW } \\ \text { condi- } \\ \text { tions } \end{array}\right\|$	Bias conditions	Conditions	Measurement point	Min.	Typ.	Max.	Unit
17	Main distortion at maximum input	Dm3	4	2	Input signal: SIG9 Measure distortion of output signal (1 kHz , sine wave) of Pins 20 and 21 (15kLPF)	Pins 20 and 21	-	0.3	2	\%
18	Main S/N ratio	Nm	4	2	Input signal: SIG7 Measure S / N ratio of output signal (1 kHz) of Pins 20 and 21 (15kLPF. RMS)	Pins 20 and 21	65	73	-	dB
19	Stereo separation $L \rightarrow R$	Sstr	4	2	Input signal: SIG4 Sstr = $20 \log \frac{\begin{array}{c} \text { Output amplitude } \\ \text { Pin } 21 \\ \text { Output amplitude } \\ \text { Pin } 20 \end{array}}{\text { and }}$ (dB) (15kLPF)	Pins 20 and 21	35	45	-	dB
20	Stereo separation $R \rightarrow L$	SstI	4	2	Input signal: SIG5 Sstl = Output amplitude $20 \log \frac{\text { Pin } 20}{\text { Output amplitude }}$ Pin 21 (dB) (15kLPF)	Pins 20 and 21	35	45	-	dB
21	Cross talk MAIN \rightarrow SUB	Cms1	2	2	Input signal: SIG15 Calculate the level difference between the output amplitude of Pins 20 and 21 (Vms1) and the measured value (Vm3) in measurement No. 13 $\mathrm{Cms} 1=20 \log \frac{\mathrm{Vm3}}{\mathrm{Vms} 1}$ (dB) (15kLPF, 1kBPF)	Pins 20 and 21	55	58	-	dB
22	Cross talk $\text { SUB } \rightarrow \text { MAIN }$	Csm1	2	1	Input signal: SIG2 Calculate the level difference between the output amplitude of Pins 20 and 21 (Vsm1) and the measured value (Vs2) in measurement No. 3. Csm1 $=20 \log \frac{\text { Vs2 }}{\text { Vsm1 }}$ (dB) (15kLPF, 1kBPF)	Pins 20 and 21	60	70	-	dB

No.	Item	Symbol	$\begin{array}{\|l\|} \hline \text { SW } \\ \text { condi- } \\ \text { tions } \end{array}$	Bias conditions	Conditions	$\begin{aligned} & \text { Measure- } \\ & \text { ment } \\ & \text { point } \end{aligned}$	Min.	Typ.	Max.	Unit
23	Cross talk MAIN \rightarrow SUB BOTH mode	Cms2	2	3	Input signal: SIG15 Calculate the level difference between the output amplitude of Pin 20 (Vms2) and the output amplitude of Pin 21 (Vms3). Cms2 $=20 \log \frac{\mathrm{Vms3}}{\mathrm{Vms} 2}$ (dB) (15kLPF, 1kBPF)	Pins 20 and 21	55	58	-	dB
24	Cross talk SUB \rightarrow MAIN BOTH mode	Csm2	2	3	Input signal: SIG2 Calculate the level difference between the output amplitude of Pin 21 (Vsm2) and the output amplitude of Pin 20 (Vsm3). $\mathrm{Csm} 2=20 \log \frac{\mathrm{Vsm3}}{\mathrm{Vsm} 2}$ (dB) (15kLPF, 1kBPF)	Pins 20 and 21	60	70	-	dB
25	Residual carrier SUB	Lcs	3	2	Input signal: SIG11 Measure subcarrier component amplitude of the output of Pins 20 and 21.	$\begin{aligned} & \text { Pins } 20 \\ & \text { and } 21 \end{aligned}$	-	10	30	mVrms
26	Residual carrier MAIN	Lcm	3	1	Input signal: SIG11 Measure the subcarrier component amplitude of the output of Pins 20 and 21.	Pins 20 and 21	-	12	20	mVrms
27	Mute volume MAIN	Mm	4	4	Input signal: SIG7 Calculate the level difference between the output amplitude of Pins 20 and 21 (VMm) and the measured value (Vm 3) in measurement No. 13. $\mathrm{Mm}=20 \log \frac{\mathrm{Vm} 3}{\mathrm{VMm}}$ (dB) (15kLPF, 1kBPF)	Pins 20 and 21	70	80	-	dB

No.	Item	Symbol	$\left\|\begin{array}{\|l\|} \hline S W \\ \text { condi- } \\ \text { tions } \end{array}\right\|$	Bias conditions	Conditions	Measurement point	Min.	Typ.	Max.	Unit
28	Mute volume SUB	Ms	4	4	Input signal: SIG2 Caluculate the level difference between the output amplitude of Pins 20 and 21 (VMs) and the measured value (Vs2) in measurement No. 3. $\mathrm{Ms}=20 \log \frac{\mathrm{Vs} 2}{\mathrm{VMs}}$ (dB) (15kLPF, 1kBPF)	Pins 20 and 21	70	80	-	dB
29	Mute volume stereo	Mst	4	$\begin{gathered} 2 \\ \text { and } \\ 4 \end{gathered}$	Input signals: SIG4, 5 Measure the level difference between the output signals of Pins 20 and 21 under bias conditions 2 and 4. Mst = Measured value under bias $20 \log \frac{\text { condition } 2(\mathrm{mVrms})}{\text { Measured value }}$ under bias condition 4 (mVrms) (15kLPF, 1kBPF)	Pins 20 and 21*2	70	80	-	dB
30	DC offset stereo L-ch	Ostl	3	$\begin{gathered} 2 \\ \text { and } \\ 4 \end{gathered}$	Input signal: SIG18 Measure the fluctuation in the output DC level of Pin 21 under bias conditions 2 and 4.	Pin 21	-	20	100	mV
31	DC offset stereo R-ch	Ostr	3	$\begin{gathered} 2 \\ \text { and } \\ 4 \end{gathered}$	Input signal: SIG18 Measure the fluctuation in the output DC level of Pin 20 under bias conditions 2 and 4.	Pin 20	-	20	100	mV
32	DC offset MAIN OUT	Om	3	$\begin{gathered} 2 \\ \text { and } \\ 4 \end{gathered}$	Input signal: No signal Measure the fluctuation in the output DC level of Pin 19 under bias conditions 2 and 4.	Pin 19	-	20	100	mV
33	Cue detection sensitivity	CD	4	2	Input signal: SIG12 Change SIG12 and measure amount of attenuation at the point "monaural" switches to "Sound multiplex".	-	9	14	17	dB

[^0]| No. | Item | Symbol | $\begin{array}{\|l\|l} \hline \text { SW } \\ \text { condi- } \\ \text { tions } \end{array}$ | Bias conditions | Conditions | Measurement point | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 34 | SUB detection sensitivity | SD | 4 | 2 | Input signal: SIG13 Change SIG13 and measure amount of attenuation at the point "monaural" switches to "Sound multiplex". | - | 10 | 13 | 18 | dB |
| 35 | Cue BPF gain | CG | 5 | 2 | Input signal: SIG14 Measure the output amplitude of Pin 21. | Pin 21 | 410 | 600 | 760 | mVrms |
| 36 | 4.5fн trap attenuation level | TG | 6 | 2 | Input signal: SIG16, 17 Measure output amplitude of Pin 28 and then measure the level difference in the output signal for SIG16 input and SIG17 input. $T G=$ $20 \log \frac{\begin{array}{c} \text { Measured value } \\ \text { for SIG16 } \\ (\mathrm{mVrms}) \end{array}}{\text { Measured value }} \begin{gathered} \text { for SIG17 } \\ (\mathrm{mV} \text { rms }) \end{gathered}$ | Pin 28 | 20 | 38 | - | dB |

SW Condition Table

No. SW	1	2	3	4	5	6
1	off	off	off	off	off	off
2	off	on	off	off	off	off
3	off	off	on	off	off	off
4	on	off	off	off	off	off
5	off	off	on	on	on	off
6	off	off	on	off	on	on

BIAS Condition Table

No.	E1AS	E2	E3	E4	E5
1	9 V	0.5 V	0.5 V	0.5 V	0.5 V
2	9 V	4.5 V	0.5 V	0.5 V	0.5 V
3	9 V	2.5 V	0.5 V	0.5 V	0.5 V
4	9 V	4.5 V	4.5 V	0.5 V	0.5 V

Input Signal Definition

SIG1: Sound MPX signal
Main: 0\%
Sub: $400 \mathrm{~Hz}, 100 \%$ MOD
Cue: Bilingual

SIG2: Sound MPX signal
Main: 0\%
Sub: $1 \mathrm{kHz}, 100 \%$ MOD
Cue: Bilingual

SIG3: Sound MPX signal
Main: 0\%
Sub: 10kHz, 100\% MOD
Cue: Bilingual

SIG4: Sound MPX signal
L-ch: 1kHz, 100\%
R-ch: 0\%
Cue: Stereo

SIG5: Sound MPX signal
L-ch: 0\%
R-ch: 1kHz, 100\%
Cue: Stereo

SIG6: Sound MPX signal
Main: 400Hz, 100\%
Sub: Carrier off
Cue: Cue signal off

SIG7: Sound MPX signal
Main: 1kHz, 100\%
Sub: Carrier off
Cue: Cue signal off

SIG8: Sound MPX signal
Main: 10kHz, 100\%
Sub: Carrier off
Cue: Cue signal off

SIG9: Sound MPX signal
Main: $1 \mathrm{kHz}, 300 \%$
Sub: Carrier off
Cue: Cue signal off

SIG10: Sound MPX signal
L-ch: 1kHz, 100\%
R-ch: 0\%
Cue: Cue signal off

SIG11: Sound MPX signal
Main: 0\%
Sub: 0\% (Carrier only)
Cue: Bilingual

SIG12: Sound MPX signal
Main: 0\%
Sub: 0\% (Carrier only)
Cue: Bilingual (level adjusted to minimum)

SIG13: Sound MPX signal
Main: 0\%
Sub: 0\% (level adjusted to minimum)
Cue: Bilingual

SIG14: 55.069 kHz sine wave
5.6 mVrms

SIG15: Sound MPX signal
Main: 1kHz, 100\%
Sub: 0\% (Carrier only)
Cue: Bilingual

SIG16: 31.47 kHz sine wave
42 mVrms

SIG17: 70.80 kHz sine wave
42 mVrms

SIG18: Sound MPX signal
L-ch: 0\%
R-ch: 0\%
Cue: Stereo

[^1]
Output and LED On/Off Table

	MODE SW			Forced monaural MODE	Forced monaural	MUTE	Output condition			LED On/Off condition		
Broadcast condition	SUB	BOTH	MAIN				L	R	MAIN	STEREO	SUB	MAIN
Stereo	\times	\times	\times	\times	OFF	OFF	L	R	$L+R$	ON	OFF	OFF
	\times	\times	\times	\times	ON	OFF	$L+R$	L+ R	L+ R	OFF	OFF	OFF
	\times	\times	\times	\times	\times	ON	DC	DC	DC	OFF	OFF	OFF
Bilingual	ON			F.MONO	\times	OFF	SUB	SUB	MAIN	OFF	ON	OFF
		ON		F.MONO	\times	OFF	MAIN	SUB	MAIN	OFF	ON	ON
			ON	F.MONO	\times	OFF	MAIN	MAIN	MAIN	OFF	OFF	ON
	ON			F.MAIN	OFF	OFF	SUB	SUB	MAIN	OFF	ON	OFF
		ON		F.MAIN	OFF	OFF	MAIN	SUB	MAIN	OFF	ON	ON
			ON	F.MAIN	OFF	OFF	MAIN	MAIN	MAIN	OFF	OFF	ON
	\times	\times	\times	F.MAIN	ON	OFF	MAIN	MAIN	MAIN	OFF	OFF	OFF
	\times	\times	\times	\times	\times	ON	DC	DC	DC	OFF	OFF	OFF
Monaural	\times	\times	\times	\times	\times	OFF	MONO	MONO	MONO	OFF	OFF	OFF
	\times	\times	\times	\times	\times	ON	DC	DC	DC	OFF	OFF	OFF

\times : No response

Control Voltage Range

		Voltage range
MODE SW Pin 16	SUB	4.5 V to Vcc
	BOTH	2 V to 3V (or open)
	MAIN	0 V to 0.5 V
Forced monaural Pin 18	on	3 V to Vcc
	off	0 V to 0.5 V (or open)
MUTE Pin 17	on	3 V to Vcc
	off	0 V to 0.5 V (or open)
Forced monaural mode Pin 6	F.MAIN	3 V to Vcc
	F.MONO	0 V to 0.5 V (or open)

Description of Operation

The sound mutiplexing signal input from Pin 7 is passed through IN AMP and is applied to the Cue BPF, Sub BPF, and Main de-emphasis circuit.

1. Discrimination circuits

Cue BPF passes only the Cue signal component from the multiplex signal. In the AM demodulator, the signal (AM wave) is AM detected and one of two sine waves is generated, either a 922.5 Hz signal for bilingual broadcasts or a 982.5 Hz signal for stereo broadcasts.
In the 952 Hz BPF, the 3.5 ff carrier component is eliminated from the Cue signal after AM wave detection. The Cue signal, from which the carrier component has been eliminated, is waveform shaped by COMP, with the resulting 922.5 Hz or 982.5 Hz pulse being applied to the Logic section.
In the 3.5 fH VCO , a 3.5 fH pulse locked onto the Cue signal carrier (3.5 ff) is created and sent to the Logic section.
In the Logic section, the broadcast mode is identified using the countdown method. Depending on this result as well as the presence of a SUB signal from SUB detector and the MUTE ON/OFF, MODE switching, and FOMO ON/OFF instructions from CONT, the output switching control signal is created. This signal is used to control the output condition of OUTPUT SW and MAIN OUT.
2. Main circuits

In MAIN DEEM, de-emphasis is applied to the Main signal component and the Sub and Cue components are removed.
After passing through the MAIN DEEM, the Main signal is applied to MATRIX, OUTPUT AMP, and MAINOUT.
3. Sub circuits

In SUB BPF, only the SUB signal component out of multiplex signals is passed through. In the 4.5 ft trap, the digital facsimile signal component is removed.
In FM Demod, the SUB signal is FM demodulated.
In SUB DEEM, the FM demodulated Sub signal is de-emphasized and the carrier component is removed. After passing through SUB DEEM, the Sub signal is applied to MATRIX and OUTPUT AMP.
4. MATRIX and output circuits

In MATRIX, the L and R signals are created by adding and subtracting the Main signal from MAIN DEEM and the Sub signal from SUB DEEM in stereo broadcast.
In OUTPUT AMP and OUTPUT SW, the output signal is switched under the control of Logic.
In addition, MAIN OUT always outputs the MAIN signal component, regardless of the broadcast mode.

Adjustment

Separation adjustment

1) Connect components as shown in figure above. (Set SW4 to NORM.)
2) Set the encoder to stereo mode, and input a 100% modulated 1 kHz signal; also set the encoder so that only the L-ch is output.
3) Monitor the oscilloscope and AC voltmeter and adjust VR2 so that the R-ch is at a minimum.
(Separation standard: 35 dB or more)

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Example of Representative Characteristics

28PIN SOP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	SOP-28P-L04
EIAJ CODE	SOP028-P-0375
JEDEC CODE	-

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	$42 /$ COPPER ALLOY
PACKAGE MASS	0.7 g

LEAD PLATING SPECIFICATIONS

ITEM	SPEC.
LEAD MATERIAL	COPPER ALLOY
SOLDER COMPOSITION	Sn-Bi Bi:1-4wt\%
PLATING THICKNESS	$5-18 \mu \mathrm{~m}$

[^0]: *2 Measure Pin 21 for SIG4 input; Pin 20 for SIG5 input.

[^1]: * Sound MPX signal level is defined as 100% MONO at $1 \mathrm{Vp}-\mathrm{p}$.

